1-Benzimidazolyl-[2-(4-methoxyphenyl)-4-quinolinyl]methanone, often abbreviated as **BMM**, is a synthetic compound with a complex structure featuring benzimidazole, quinoline, and methoxyphenyl rings. This chemical structure makes it interesting for research in several fields:
**Potential Biological Activity:**
* **Anti-cancer Activity:** BMM has demonstrated promising in vitro and in vivo anticancer activity against various cancer cell lines, including breast, lung, and colon cancer cells. Its mechanism of action is thought to involve inhibiting the growth and proliferation of cancer cells.
* **Anti-inflammatory Activity:** Some research suggests BMM may have anti-inflammatory properties. It is thought to inhibit the production of inflammatory mediators.
* **Antimicrobial Activity:** Preliminary studies have shown that BMM exhibits antibacterial and antifungal activity against certain bacterial and fungal strains.
**Research Significance:**
* **Lead Compound for Drug Development:** BMM is a potential lead compound for the development of new anticancer, anti-inflammatory, and antimicrobial drugs.
* **Structure-Activity Relationships:** Studying BMM helps researchers understand the relationship between its chemical structure and biological activity. This knowledge can guide the design and synthesis of more potent and selective drugs.
* **Mechanism of Action Studies:** Research on BMM aims to elucidate its precise mechanism of action, allowing for targeted therapeutic strategies.
**Important Note:** It's crucial to understand that BMM is still in the early stages of research. Further studies are needed to confirm its therapeutic potential and safety before it can be considered for clinical use.
**Additional Information:**
* BMM is a synthetic compound, meaning it doesn't occur naturally.
* Its chemical structure is relatively complex, making its synthesis challenging.
* There are ongoing efforts to optimize its chemical structure to enhance its efficacy and reduce potential side effects.
The research on BMM is ongoing, and it holds significant potential for the development of new and effective therapies for various diseases. However, it's important to remember that research is still in progress and further investigation is required.
ID Source | ID |
---|---|
PubMed CID | 1221201 |
CHEMBL ID | 1596056 |
CHEBI ID | 107872 |
Synonym |
---|
OPREA1_490519 |
smr000159376 |
MLS000537519 |
1h-benzimidazol-1-yl[2-(4-methoxyphenyl)quinolin-4-yl]methanone |
STK441078 |
AK-968/12117141 |
4-(1h-benzimidazol-1-ylcarbonyl)-2-(4-methoxyphenyl)quinoline |
CHEBI:107872 |
AKOS003267467 |
benzimidazol-1-yl-[2-(4-methoxyphenyl)quinolin-4-yl]methanone |
HMS2300J08 |
CHEMBL1596056 |
1-benzimidazolyl-[2-(4-methoxyphenyl)-4-quinolinyl]methanone |
Q27186213 |
REGID_FOR_CID_1221201 |
1h-1,3-benzimidazol-1-yl[2-(4-methoxyphenyl)-4-quinolyl]methanone |
Class | Description |
---|---|
quinolines | A class of aromatic heterocyclic compounds each of which contains a benzene ring ortho fused to carbons 2 and 3 of a pyridine ring. |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Chain A, 2-oxoglutarate Oxygenase | Homo sapiens (human) | Potency | 28.1838 | 0.1778 | 14.3909 | 39.8107 | AID2147 |
Chain A, Ferritin light chain | Equus caballus (horse) | Potency | 31.6228 | 5.6234 | 17.2929 | 31.6228 | AID485281 |
Chain A, Cruzipain | Trypanosoma cruzi | Potency | 39.8107 | 0.0020 | 14.6779 | 39.8107 | AID1476 |
Luciferase | Photinus pyralis (common eastern firefly) | Potency | 5.3582 | 0.0072 | 15.7588 | 89.3584 | AID588342 |
thioredoxin reductase | Rattus norvegicus (Norway rat) | Potency | 28.1838 | 0.1000 | 20.8793 | 79.4328 | AID588456 |
ClpP | Bacillus subtilis | Potency | 31.6228 | 1.9953 | 22.6730 | 39.8107 | AID651965 |
Microtubule-associated protein tau | Homo sapiens (human) | Potency | 17.7828 | 0.1800 | 13.5574 | 39.8107 | AID1460 |
aldehyde dehydrogenase 1 family, member A1 | Homo sapiens (human) | Potency | 35.4813 | 0.0112 | 12.4002 | 100.0000 | AID1030 |
nonstructural protein 1 | Influenza A virus (A/WSN/1933(H1N1)) | Potency | 8.9125 | 0.2818 | 9.7212 | 35.4813 | AID2326 |
P53 | Homo sapiens (human) | Potency | 22.3872 | 0.0731 | 9.6858 | 31.6228 | AID504706 |
15-hydroxyprostaglandin dehydrogenase [NAD(+)] isoform 1 | Homo sapiens (human) | Potency | 35.4813 | 0.0018 | 15.6638 | 39.8107 | AID894 |
ras-related protein Rab-9A | Homo sapiens (human) | Potency | 3.9811 | 0.0002 | 2.6215 | 31.4954 | AID485297 |
histone-lysine N-methyltransferase 2A isoform 2 precursor | Homo sapiens (human) | Potency | 63.0957 | 0.0103 | 23.8567 | 63.0957 | AID2662 |
nuclear receptor ROR-gamma isoform 1 | Mus musculus (house mouse) | Potency | 22.3872 | 0.0079 | 8.2332 | 1,122.0200 | AID2546; AID2551 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Protein | Taxonomy | Measurement | Average | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Protein skinhead-1 | Caenorhabditis elegans | IC50 (µMol) | 100.0000 | 7.3900 | 21.5238 | 43.9000 | AID624474 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Protein | Taxonomy | Measurement | Average | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
recombinase A | Mycobacterium tuberculosis H37Rv | EC50 (µMol) | 26.6750 | 0.0180 | 23.2882 | 287.6000 | AID434968; AID435010 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Protein | Taxonomy | Measurement | Average | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
replicative DNA helicase | Mycobacterium tuberculosis H37Rv | AC50 | 380.0000 | 0.0570 | 30.7482 | 325.3000 | AID449749; AID449750 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |